
Thermal Mass Flowmeter FMT500-IG (Sensyflow iG)

for gases, intelligent

- Direct measurement of mass flow and gas temperature
 - No additional pressure and temperature compensation required
- Digital measured value processing with improved signal quality
- Wide measuring range up to 1:150 with high measuring accuracy
 - Factory-calibrated, with (optional) DKD calibration certificate
- Short response time of less than 0.5 seconds
- Negligible pressure loss
- No moving parts, no wear, maintenance-free
- Defined, reproducible mounting position in the middle of the conduit
 - Pipe components for DN25...DN200 (1''...8'')
 - Weld-on adapters for larger diameters and square ducts
 - Reliable and convenient hot tap fittings
- Compact device with back-lit display
- Remote version with separate wall housing
- Communication:
 - PROFIBUS DPV1 or analog/HART signal
- Diagnostic and alarm functions
- ATEX certificate up to Category 1 (Zone 0), including Categories 2 and 3 and Dust-Ex

Direct mass flow measurement Short response time High accuracy

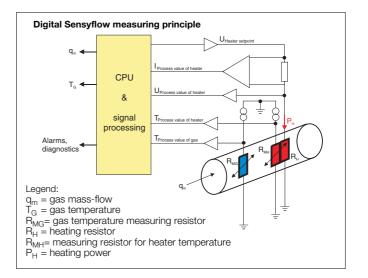
Description

FMT500-IG (Sensyflow iG) is a thermal flowmeter for gases. The measuring principle (hot-film anemometer) allows the direct determination of mass flow and gas temperature. Taking the standard density of the gases into consideration, the standard volume flow rate can be displayed without additional pressure and temperature compensation.

The compact version of the FMT500-IG (Sensyflow iG) metering system comprises a transducer with the complete evaluation electronics and a pipe component. In the remote version the transducer and the electronics wall housing are connected via a max. 25 m long cable. Depending on the version, the transducer provides the measuring signals either as PROFIBUS or as analog/HART signals. The unit is operated either remotely via PROFI-BUS/HART communication or locally by using a magnetic pen.

The pipe component is available for nominal pipe sizes ranging from DN 25 to DN 200 and in various designs. It is also possible to install the transducer directly in square ducts or pipes with any diameter via a weld-on adapter.

Measuring principle

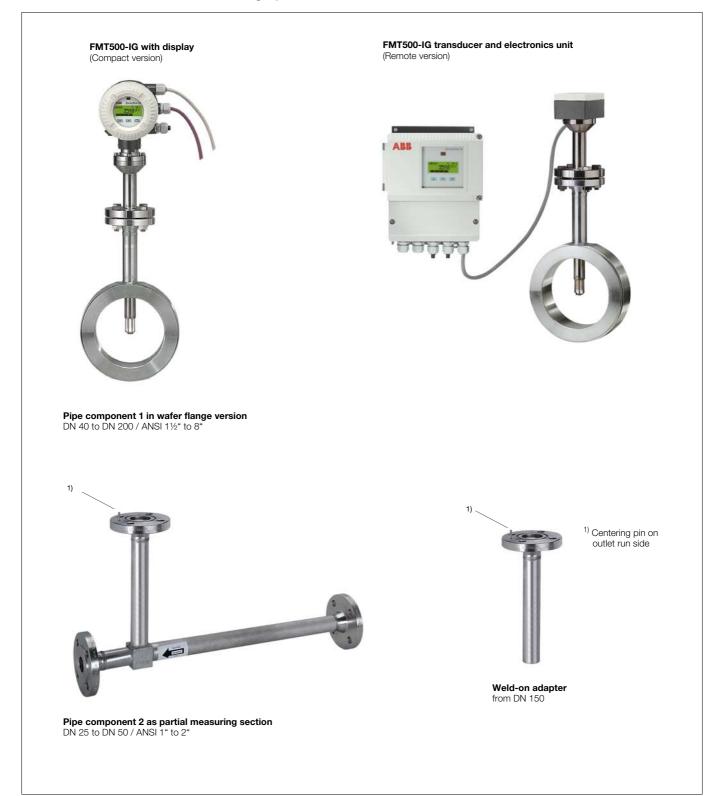

For many years, thermal gas-mass flowmeters with analog design have been established as complete process measuring devices in the chemical industry. The digital FMT500-IG (Sensy-flow iG) represents a logical step in the consequent development of this well-proven technology.

Physics of measurement

Thermal flow metering procedures use different ways to evaluate the flow dependent cooling of a heated resistor as measuring signal. In a hotfilm anemometer with temperature difference control, the heated platinum resistor is maintained at a constant overtemperature in relation to an unheated platinum sensor inside the gas flow. The heating power required for maintaining the overtemperature depends directly on the flow rate and the material properties of the gas. With a known (and constant) gas composition the mass-flow can be determined by electronically evaluating the heater current/mass-flow curve without additional pressure and temperature compensation. When using the constant power method, the temperature difference is measured which results from a constant heating power and depends on the heat quantitiy dissipated by the gas mass flow as well. Together with the standard density of the gas this results directly in the standard volume flow. Considering the high measuring range dynamics of 1:150, an accuracy smaller than 1 % of the measuring value is achieved.

The digital Sensyflow method

With the patented digital Sensyflow method there are now 4 signals available to the evaluation electronics. These include, besides the heating power, the temperatures of the fluid and the heated sensor, which can thus be used to compensate the temperature dependency on gas characteristics. By storing the gas data in the measuring system it is possible to calculate and perform an optimum adaptation at any operating time.


Advantages of the digital concept

- By providing several primary and secondary signals these signals can be output in parallel via the fieldbus connection. This makes a gas temperature measurement unnecessary.
- Through the implementation of complete digital signal processing it is possible to adapt the sensor control and signal conditioning to the process. This means that it is possible to achieve optimum measuring dynamics at all times, even under changing operating conditions.
- The digital Sensyflow method is capable of providing a further enhanced measuring range.
- While controlling the heater power at the same time, the temperature measurement of the heating resistor sets a limit of this temperature. If errors occur in the system resulting in gas temperatures beyond the specification, the heating power is switched off and the device sends a substitute value with an additional warning signal. Both measures result in a significant prolongation of the service life for high-temperature operation and enhanced equipment safety for the user.
- The most significant application and cost advantage results from the diagnostic features of the digital Sensyflow. The functions provided allow for preventive maintenance of the measuring system and the equipment, as operating times, temperature peaks and loads in the system can be evaluated, stored, and reported. This leads to direct cost savings by preventing failures and equipment downtime.

Typical applications

- Gas volume measurement in chemical industry and process technology
- Compressed air balancing
- Gas burner control systems
- Biogas and activation air measurement in sewage plants
- Gas measurement at air decomposers
- Hydrogen measurement in the process

Overview of FMT500-IG measuring system

for gases, intelligent

Type overview

Туре	FMT500-IG	FMT500-IG FMT500-IG (Ex)								
Application	Process	Process engineering								
Explosion protection	Manufacturer declaration ATEX II 3 G and II 3 D (Zone 2/22)	Certificate KEMA 03ATEX2100 ATEX II 1/2 G and II 2 D (Zone 0, 1, 21) FM/CSA Version under preparation								
Components	 – IG transducer as compact or remote version – Pipe component type 1 or 2 or weld-on adap 	sducer as compact or remote version								
Nominal pipe sizes	 Pipe component type 1: wafer flange DN 40, 50, 80, 100, 150, 200 – ANSI 1½", 2' Pipe component type 2: measuring section DN 25, 40, 50 – ANSI 1", 1½", 2" (Process connection: flanges according to DII ASME B 16.5, Cl. 150/300 (ANSI) Weld-on adapter for square ducts and pipe d 	N 2635 Form C, PN 40 resp.								
Materials	1.4571, ceramic sensor	(other materials on request)								
Measured gases	Gases and gas mixtures	s with known composition								

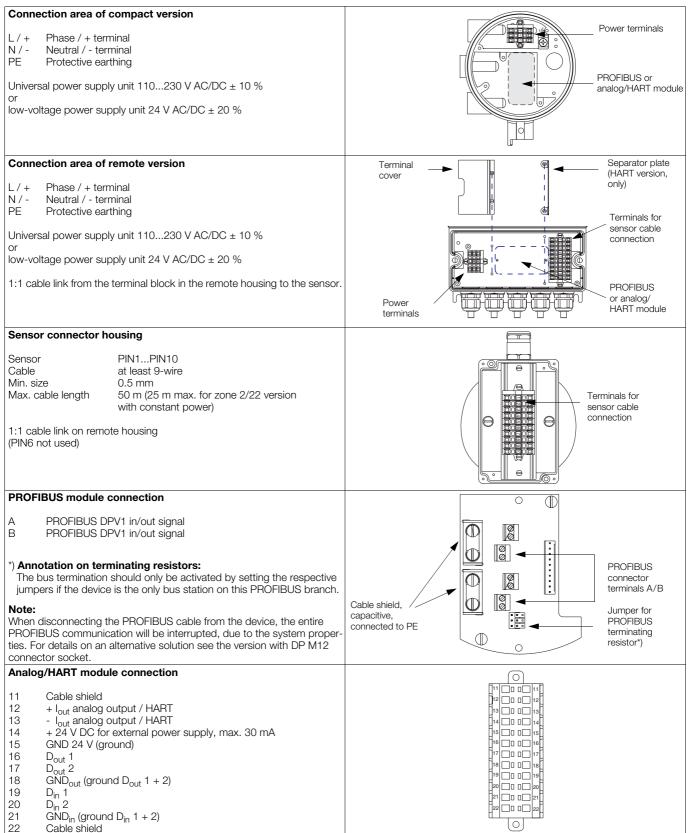
Equipment and functions

- Graphic display, back-lit, 120 x 32 pixels (optional)
- Mass flow or standard volume flow measurement, digital or bargraph display indication (see p. 15 for available flow rate units)
- Totalizer function (adding counter) with Start/Stop, Reset and Preset function
- Gas temperature measurement
- 4 characteristic curves for different gases or pipe diameters (optional)
- Max./min. value storage of flow rate, gas and housing temperature
- Alarm and limit value functions
- Status and diagnostic signals
- Operating hour meter
- Simulation of measured values and status signals
- On-site adaptation of measuring value practicable by user
- Password-protected input menus
- 4 display languages
- Local operation by using a magnetic pen
- FDT/DTM for parameter setting via DSV4xx (SMART VISION) or process control system

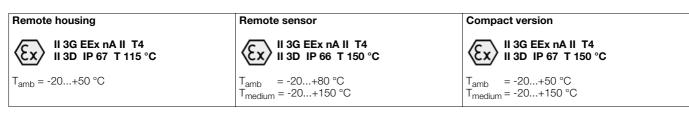
PROFIBUS communication, **DPV1** version

• in acc. with PA profile 3.0, max. transmission rate 1.5 Mbaud, direct connection to an intrinsically safe PROFIBUS DP in the hazardous area is possible

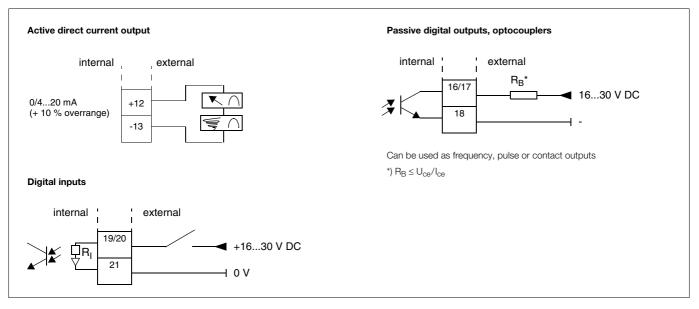
Signal inputs and outputs, analog/HART version

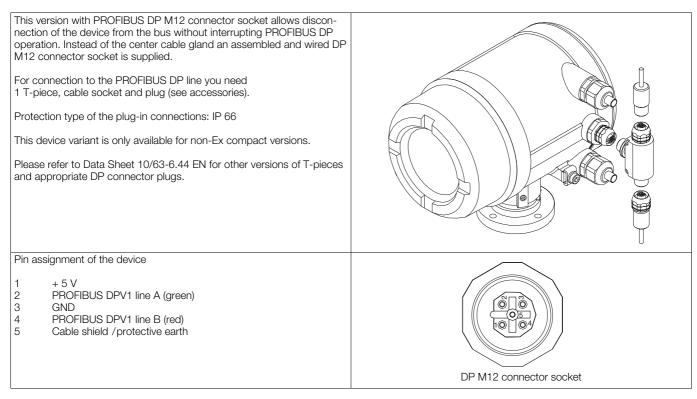

- HART communication via 4...20 mA analog signal
- Current output for flow rate value
- 2 open collector digital outputs, configurable as
 - frequency output for flow rate and gas temperature
 - pulse output for totalizer (adding counter)
 - contact output for limit values and alarms
- 2 digital inputs, configurable for/as
 - external change-over of characteristic curve
 - Totalizer start/stop or reset
 - frequency input for external signal transmitter
- 24 V DC output for input/output wiring or for transmitter supply (max. 30 mA, not for explosion-proof versions)

Technical data

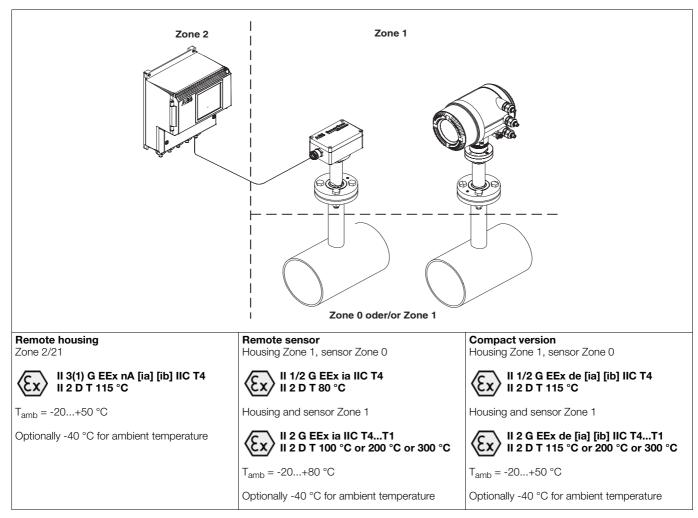

уре	FMT500-IG	FMT500-IG (Ex)								
easuring ranges	q _{min} q _{max}	q _{min} q _{max}								
	0 (1.5) 180	0 (1.5) 160								
N 40	0 (3) 450	0 (3) 430								
-	0 (5) 750	0 (5) 700								
N 80	0 (15) 2,000	0 (15) 1,700								
	0 (25) 3,200	0 (25) 3,000								
N 150										
	- ()	- ()								
	0 (100) 15,000	0 (100) 13,000								
o to 3000 mm	0 (20,000) 3,000,000	0 (20,000) 2,700,000								
	For air or nitrogen in kg/h (other gases on request)	For air or nitrogen in kg/h (other gases on request)								
n request)	8	ions involving air under atmospheric conditions								
easured error	Under calibration conditions in	n the stated measuring range								
r, nitrogen	$\leq \pm 0.9$ % of measured value ± 0.05 % of possible	le end value in this nominal size (s. meas. ranges)								
her gases	$\leq \pm 1.8$ % of measured value ± 0.10 % of possible	le end value in this nominal size (s. meas. ranges)								
-	For special calib	ration on request								
epeatability error	< 0.2 % of me	easured value								
fluence of medium temperature	< 0.05 %/K of measured valu									
-										
fluence of medium pressure	typically 0.2 %/100 kPa (/1 bar) of mea									
esponse time	T ₆₃ ≤0.5 s	T ₆₃ = 2 s								
	$T_{63} = 2$ s for Zone 2/22 version with constant power									
perating pressure	4 406 5	$P_{\rm c}$ (40 bar)								
	4 × 10 ⁶ P									
perating temperature of medium	Standard range: -25+150 °C	acc. to temperature classes of ATEX certificate								
ransducer)	Extended range: -25+300 °C	max20+150 °C								
	for Zone 2/22 versions: -20+150°C									
mbient temperature T _{amb}										
valuation electronics										
/ithout display	-25+65 °C	-20+50 °C								
/ith display	-25+50 °C	-20+50 °C								
	for Zone 2/22 versions: -20+50°C									
	Other ambient temr	peratures on request								
torage temperature		+85 °C								
egree of protection	IP 67 (IP 66 for re									
ecommended	According to DIN	According to DIN EN ISO 5167-1								
stallation requirements	Minimum inlet run 15 × pipe diameter D, outlet run 5 × pipe diameter D (see page 15)									
ressure loss	< 1.0 kPa (10 mbar), typical value 0.1 kPa (1 mbar)									
ogarithmic diagram)										
gantininic diagram										
	Pressure dop (mbai)									
	0,5									
	0.1									
	10 50 100 500 1	000 5000 10000								
	Z-18927 Ma	ass flow rate (kg/h)								
ectrical power values	Universal pow	er supply unit:								
		$_{=}10\%$ (f = 4862 Hz)								
	Low-voltage po									
		% (f = 4862 Hz)								
ower dissipation		slow-blow fuse of at least 2 A required								
-		or 1/2" NPT								
onnections		· · ·								
able (remote version)		opper screen LIYCY 10 x 0.5 mm ²								
		s unit (max. 25 m for ATEX-zone 2/22 versions								
	with constant power, as well a	is ATEX zone 1 and 0 versions)								
utput signals										
	EN 50170 acc	to PA profile 3.0								
ROFIBUS DPV1 version										
ROFIBUS DPV1 version										
nalog/HART version		land < 600 O plantring the instant								
nalog/HART version nalog output		load < 600 Ω electrically isolated								
nalog/HART version nalog output igital outputs	2 x passive optocoupler (approx. 100 mA) sele	ectable as frequency, pulse, or contact output								
nalog/HART version nalog output	2 x passive optocoupler (approx. 100 mA) selv 2 x 24 V lin typ. 10 mA (low < 2 mA, hig									

for gases, intelligent


Electrical connection of standard and Zone 2/22 versions


Zone 2/22 versions: codes and temperature limits

Examples for connecting peripherals (analog/HART version)


PROFIBUS DPV1 version with DP M12 connector socket

Electrical connection of ATEX versions for Category 1/2 G and 2 D (Zone 0/1/21)

P	
Connection area of compact version L / + Phase/+ terminal N / - Neutral/- terminal	Terminal Power terminals
PA Protective earthing	
Universal power supply unit 110230 V AC/DC ± 10 %, 20 VA 4862 Hz or	
low-voltage power supply unit 24 V AC/DC ± 20 %, 20 VA 4862 Hz	analog/HART module
Explosion protection for power terminals: EEx e	
Connection area of remote version	Terminal 📕 🍘 Separator plate
L / + Phase/+ terminal	cover Separator plate (HART version,
N / - Neutral/- terminal	i only)
PE Protective earthing	Terminals for
Universal power supply unit 110230 V AC/DC \pm 10 %, 20 VA 4862 Hz or	
low-voltage power supply unit 24 V AC/DC \pm 20 %, 20 VA 4862 Hz	
1:1 cable link from the terminal block in the remote housing to the sensor.	Power terminals
Sensor connector housing	
Explosion protection EEx ia Sensor PIN1PIN10 Cable at least 9 wires Min. size 0.5 mm Max.cable length 25 m 1:1 cable link on remote housing (PIN6 not used)	Terminals for sensor cable connection
PROFIBUS module connection	
A PROFIBUS DPV1 in/out signal B PROFIBUS DPV1 in/out signal	
Type of explosion protection EEx ib	PROFIBUS connector
May be connected to an intrinsically safe PROFIBUS DP, only.	Lerminals X2/X3
Exernal bus termination in acc. with RS 485_IS specification.	Cable shield PIN A/B
When connecting the fieldbus or signal cables observe the safety-related specifications in the KEMA 03ATEX2100 certificate.	connected to PA
Analog/HART module connection	
31 + I _{out} analog output / HART	
32 - I _{out} analog output / HART	
33 D _{out} 1 34 GND _{out} (ground D _{out} 1)	
35 D _{out} 2	
36 GND _{out} (ground D _{out} 2)	
37 D _{in} 1 38 GND _{in} (ground D _{in} 1)	
39 D _{in} 2	
40 GND _{in} (ground D _{in} 2)	
Type of explosion protection EEx ib or EEx e	
When connecting the fieldbus or signal cables observe the safety-related specifications in the KEMA 03ATEX2100 certificate.	\bigcirc

Mounting in hazardous areas

Gas		G (Sensyflow iG-Ex) compact	Sensor	Electronics unit
	Surface temperature	· · · · · · · · · · · · · · · · · · ·		
T4	T 115 °C	-20+ 80 °C	1G	2G, 2D
T4	T 115 °C	-20+100 °C	2G	2G, 2D
T3	T 115 °C	-20+100 °C	2G	2G, 2D
T2	T 200 °C ¹⁾	-20+200 °C ¹⁾	2G	2G, 2D
T1	T 300 °C ¹⁾	-20+300 °C ¹⁾	2G	2G, 2D
	FMT500-	IG (Sensyflow iG-Ex) remote h	ousing	
Gas	Surface temperature		Elect	ronics unit
T4	T115 °C		3	G, 2D
	FMT500-	-IG (Sensyflow iG-Ex) remote s	sensor	
Gas	Surface temperature	Process temperature	Sensor	Connection head
T4	T 80 °C	-20+ 80 °C	1G	2G, 2D
T4	T 80 °C	-20+100 °C	2G	2G, 2D
T3	T 100 °C	-20+100 °C	2G	2G, 2D
T2	T 200 °C ¹⁾	-20+200 °C ¹⁾	2G	2G, 2D
T1	T 300 °C ¹⁾	-20+300 °C ¹⁾	2G	2G, 2D

¹⁾ Temperatures in accordance with ATEX temperature classes, max. process temperature for transducer -20...+150 °C

Safety-related input and output specifications

PROFIBUS DPV1 version

Output current circuit											
PROFIBUS DP	$U_0 = \pm 3.72 \text{ V}$	$U_0 = \pm 3.72 \text{ V}$									
RS 485_IS interface	I _o	P _o EEx ib IIC/IIB									
Terminals X2, X3	[mA]	[mW]	C'[nF/km]	L'/R'[μΗ/Ω]							
PIN A/B	± 155	± 144.2	≤ 250	≤ 28.5							
	Electrical isolation	ge U _i : ± 4.20 V	nce with KEMA Ex certific	,							

Analog/HART version

Output current circuit	tput current circuit Intrinsically safe EEx ib IIC/IIB				
Current output	U _o = 17.2 V;	U _i = 30 V;	l _{li} = 100 mA		U _B = 30 V
Active	I _o	Po	EEx ib IIC		I _B = 30 mA
PIN 31 + 32	[mA]	[mW]	C _i [nF]	L _i [mH]	
	78.3	337	2.0	0.25	
Disital sutsut	Approved for co PIN 32 is connect				
Digital output Passive		U _B = 30 V I _B = 100 mA			
D _{out} 1: PIN 33 + 34 D _{out} 2: PIN 35 + 36	P _I = 115 mW				
Digital input Passive D _{in} 1: PIN 37 + 38 D _{in} 2: PIN 39 + 40	$U_{I} = 30 V$ $I_{I} = 250 mA$ $P_{I} = 1.1 W$		C _I = 2.0 nF L _I = 0.250 mł	4	U _B = 30 V I _B = 100 mA

Special requirements:

The output current circuits are designed such that they can be connected to either intrinsically safe or not intrinsically safe current circuits. However, intrinsically safe and not intrinsically safe circuits must **not** be mixed or combined.

The rated voltage of not intrinsically safe current circuits is U_{m} = 60 V.

- Make sure that the cover of the power terminal box is always closed properly. When using the device with intrinsically safe output current circuits it is permissible to open the terminal box.
- It is recommended to use the enclosed cable glands for the output current circuits, according the type of explosion protection: intrinsically safe = blue; not intrinsically safe = black.
- The transducer and the transmitter housing must be connected to an equipotential bonding system. When using intrinsically safe current outputs proper equipotential bonding must be ensured along the current circuits.
- Make sure that the measuring pipe materials are resistant to possible corrosive substances in the measured medium.

Notice:

The values indicated here have been taken out of the approval certificate. Always observe the specifications and supplements in the ATEX certificate.

Do not open the front cover of the housing in the hazardous area!

Always observe the safety specifications in the operating instruction for all device versions!

Communication

HART

The HART protocol is used for digital communication between a process control system/PC, a hand-held terminal and a field instrument. All parameters related to the device or measuring point can be transferred from the transmitter to the process control system or PC. Also, the transmitter can be re-configured in this way.

Digital communication is realized by modulating an AC signal upon the analog output (4...20 mA). This signal does not affect the connected evaluation units.

DSV4xx (SMART VISION) - a universal communication program for intelligent field instruments using the FDT/DTM technology is the appropriate operation and configuration tool. Various communication methods allow for data exchange with the entire range of field instruments. This program is mainly designed for parameter display, configuration, diagnostics and data management of all intelligent field instruments meeting the communication requirements.

Basic features like the upper range value or some flow rate units can be configured by using the universal HART DTM. The full functionality will be available with the FMT500-IG HART DTM (under preparation).

Transmission method

FSK modulation on the 4...20 mA current output (+ overrange) acc. to Bell 202 Standard. Max. signal amplitude 1.2 mA_{PP}.

Load

Min. 250 Ω , max. 600 Ω Max. cable length 1500 m AWG 24, twisted, shielded

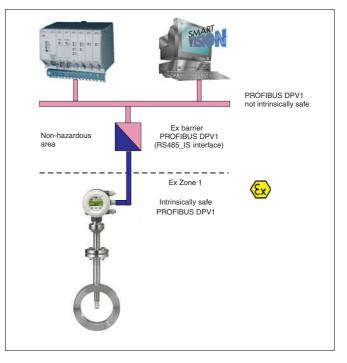
Baud rate

1200 bauds Indication of logical1: 1200 Hz Indication of logical 0: 2200 Hz

PROFIBUS DPV1

Bus communication of the thermal gas mass flowmeter FMT500-IG (Sensyflow iG) with PROFIBUS interface is based on the "Profile For Process Control Devices" Version 3.0 (PA Profile 3.0) as of October 1999. PROFIBUS DP (RS 485 type transmission) is used for bus coupling. Acyclic PROFIBUS DPV1 services are supported.

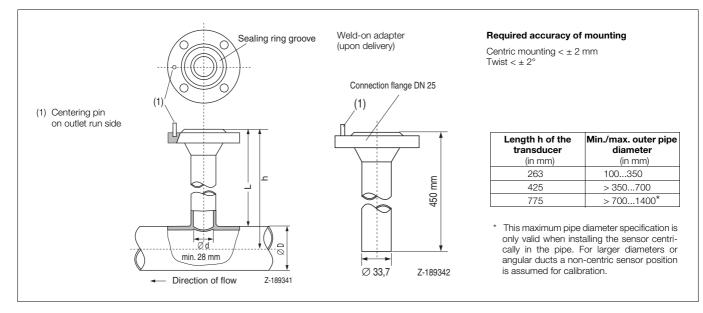
PROFIBUS interface parameters

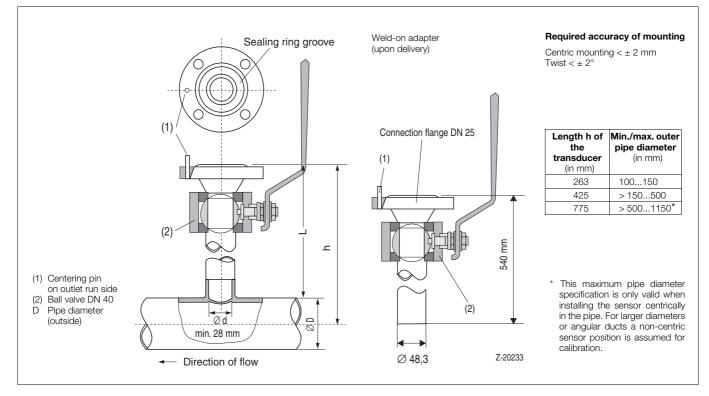

- DPV1 communication without alarms
- Support of C1 and C2 masters
- Max. transmission rate: 1.5 Mbauds
- ID number: 0x05CA
- GSD file name: ABB_05CA.GSD

The cables for PROFIBUS connection must meet the following requirements to comply with PROFIBUS Specification EN50170 Part 8-2:

Parameter	DP, line type A, shielded
Surge impedance in Ω	135165 at a frequency of
	320 MHz
Operating capacity	(pF/m) 30
Loop resistance (Ω /km)	≤110
Solid conductor	AWG 22/1
Flexible conductor	> 0.32 mm ²

Parameter setting and configuration are possible by using the DSV4xx (SMART VISION) program and the PROFIBUS-DTM FMT500-IG, similar to analog/HART communication.

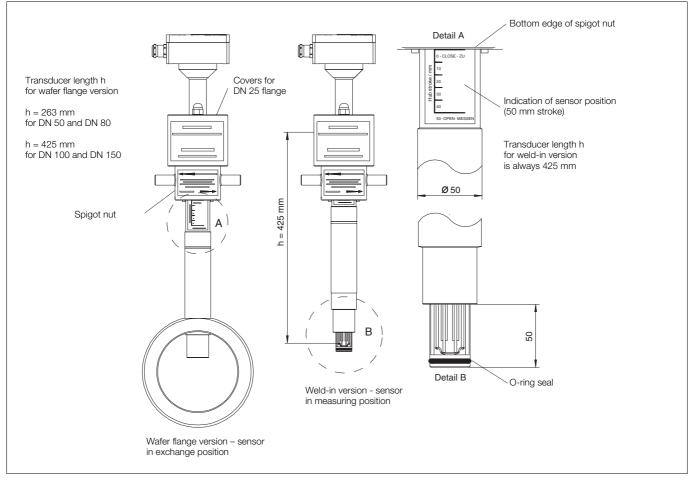

Direct connection to intrinsically safe PROFIBUS DP lines (see the illustration below) is permissible under the proviso that approved device models are used and the safety specifications and safety-related parameters in accordance with KEMA 03ATEX2100 are observed. The cable length and possible number of Ex bus nodes depend on the Ex barrier used.


Dimensional drawings (dimensions in mm)

$ \begin{array}{ c c c c c c } \hline \hline & & & & & & & & & & & & & & & & & $	Trans	ducer (compa	ct version)	Ноц	sing for evalua	ation electroni	cs (remote ver	rsion)	Transduc	er (remote ver	rsion)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Traile			i iou	-				Tanouu		
$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		sensor								Centre of sensor	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pipe c	omponent 1: V	Vafer flange	P	ipe componer	nt 2: Partial me	easuring secti	on	Wel	d-on adapter	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				2		4		T D			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					D1		d2				L5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			269	263	-		-				-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								165		837	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		K1 = 150			-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-			-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-			450
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					293	206.5	285	-	-	-	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M2 = 265			4						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		M3 = 139									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1			1			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			269	263							-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		K1 = 150			-						-
$8^{"}$ L6 = 310 M1 = 208 M2 = 265 > 28" L6 = 310 M1 = 208 M3 = 139 278 202.7 270 -											-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-						450
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			16.1	107	278	202.7	270	-	-	-	-
ASME B 16.5, Cl. 300 (ANSI), Sch 40 S 1" B1 = 125 269 263 $-$ 26.6 $-$ 123.9 560 454 $-$ 1½" B2 = 80 B3 = Ø115 269 263 $-$ 26.6 $-$ 123.9 560 454 $-$ 2" B3 = Ø115 B3 = Ø115 94 40.9 73 155.4 864 741 $-$ 3" K1 = 150 110 52.6 92 165.1 1003 846 $-$ 4" K3 = 206 148 78.0 127 $ -$ 6" L1 = 188 16 = 310 307 202.7 270 $ -$ > 14" M1 = 208 431 425 431 425 $ -$		M2 = 265			4						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1	1	i	i	i	i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			269	263							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-						-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		K1 = 150						-	-	-	-
$8^{"}$ L6 = 310 307 202.7 270 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td>								-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-	-	-	450
$> 14^{-1}$ M2 = 265 431 425					307	202.7	270	-	-	-	-
					4						
	> 28"	M3 = 139	781	775							

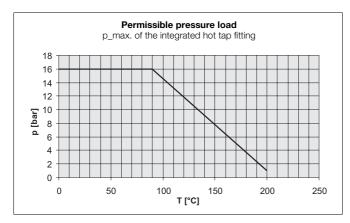
Weld-on adapter for FMT500-IG (Sensyflow iG)

Weld-on adapter with ball valve for FMT500-IG (Sensyflow iG)


Note:

Prior to mounting the weld-on adapters must be shortened to length $L = h - 1/2 D_{outer}$

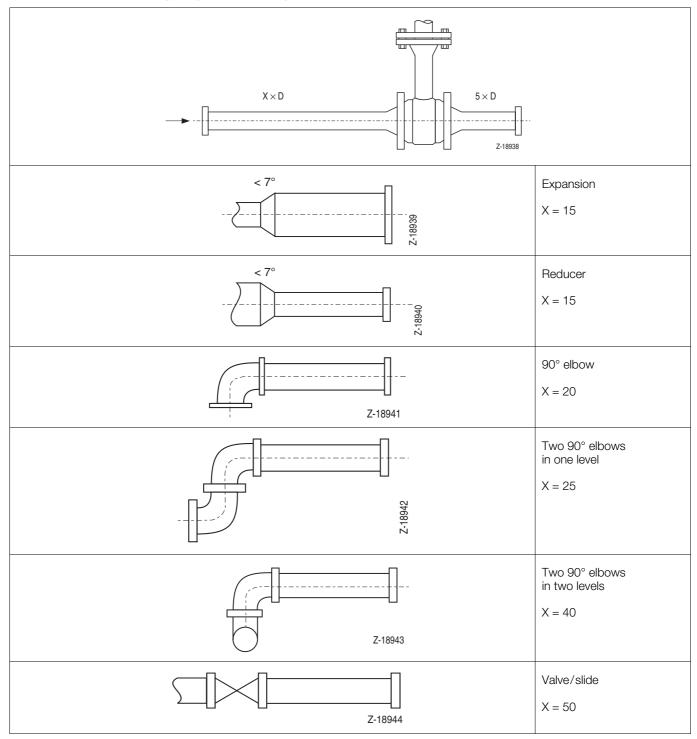
The distance h between the upper flange edge and the pipe center line must be within a tolerance of ± 2 mm.


The right angle to the pipe center line must be observed (max. tolerance $\pm 2^{\circ}$)

The centering pin of the adapter must be aligned centrically with the pipe center line in flow direction (on outlet run side, downstream of the measuring point).

Integrated hot tap fitting for FMT500-IG (compact and remote versions)

The integrated hot tap fitting is used instead of the pipe component and weld-on adapter assembly described above if the sensor must be exchangeable during operation with virtually no gas escaping from the system.


Maximum pressure/temperature values for the integrated hot tap fitting

It is recommended to use the hot tap fitting for measurements in main conduits (e.g. compressed air systems) or for measuring points which otherwise require rinsing prior to removing the sensor. As a rule, hot tap fittings should be preferred for all systems where, otherwise, the entire system or parts of it must be switched off to replace a sensor.

Handling:

The transmitter in a compact or remote version is screwed to the hot tap fitting through the DN 25 flange. Then the cover is put on. The sensor is set from the exchange position to the measuring position by turning the spigot nut. The bottom edge of the spigot nut indicates the current sensor position (see Detail A, sensor is in exchange position). Only when the measuring position 50 - OPEN-MESSEN (lower stop of the spigot nut) is reached, the sensor is placed exactly in the center of the pipe and exact measurement is ensured.

Recommended steadying lengths according to DIN EN ISO 5167-1

To achieve the stated measuring accuracy, the steadying lengths seen above must be provided. For combinations of inlet run disturbances, e. g. valve and reducer, you must always consider the longer inlet run length. In confined spaces at the mounting location the outlet run length can be shortened to 3 x D. The reduction of the minimum inlet run length, however, will impact on the achievable accuracy.

High repeatability of the measuring value is still provided. Under certain circumstances, special calibration can be performed for insufficient steadying lengths. For this purpose and in individual cases, consult the DKD Calibration Department at Alzenau. For gases with extremely low density (hydrogen, helium) the steadying lengths must be doubled.

Ordering information

	Catalog No											Code	1	1
Transducer FMT500-IG	V14224-	Г Т	Т			Т	Т	T	T	1		Code		
Versions	V 14224-		-	-		-	-	-	-	-	_			
Standard -25+150 °C		1												
High-temperature version -25+300 °C		2												
ATEX version for Zone 2 / 22 -20+150 °C	1)	3												
ATEX version for Zone $1/21$ $-20+150$ °C max.	1) 2)	4												
ATEX version for Zone 0 / 21 -20+ 80 °C	2)	4 5												
Medium		э	-	_		_	-		-					
	ta		А											
Gases and gas mixtures, natural gas without DVGW certifical Oxygen with O_2 certificate	lle		В											
D_{1}														
DVGW certificate for natural gas			C D											
H ₂ , He (1.5 MPa max.; always with process gas calibration)	3) 4)		U	_		_								
Sensor unit														
Standard ceramic sensor				1		_	_	_	_					
Material 1.4571	-													
Mounting length 263 mm (DN 25 DN 350)	5)			1										
Mounting length 425 mm (> DN 350DN 700)	5)				2									
Mounting length 775 mm (> DN 700)	5)			3	3	_								
Power supply														
Universal power supply: $110230 \text{ V AC/DC} \pm 10\% \text{ (f} = 10\% $,				1									
Low-voltage power supply: $24 \text{ V AC/DC} \pm 20\%$ (f = 4862	2 HZ)				2	2								
Designs														
Compact design, without display, controlled via interface (und	der preparat	ion)				0								
Compact design, controlled via magnetic pen and keypad						1								
Remote version w. display, controlled via magn. pen & keypa	id (cables s	ee a	cce	ess.)	6) 2	2							
Communication														
Analog signal / HART							1							
PROFIBUS DPV1, direct connection of bus cable							2							
PROFIBUS DPV1, with DP M12 connector socket (for non-E	Ex compact	vers	sion	s, oi	nly)		3							
Cable glands (enclosed)														
Metric, M20 x 1.5								1						
½" NPT								2						
Number of characteristics														
1 characteristic									1					
2 characteristics									2					
3 characteristics									3					
4 characteristics									4					
Calibration certificate														
Factory certificate										0				
DKD certificate for calibration with air (in in-house calibration	,									1				
(DKD calibration office No. 05701, PTB-approved) (not for pr	ocess gas o	alib	ratio	on)										
Material certificate														
Without											0			
3.1 B certificate											1			

1) manufacturer's declaration

2) depending on temperature class T4...T1, for T4/T3 max. 100 °C, max. gas temperature 150 °C

3) process gas calibration for other gases/gas mixtures on request

4) with measured medium H₂ or He in nominal size DN 25/40 or 1"/1 1/2"

please use pipe components design 2 with flow straightener

5) nominal size ranges when using pipe components or weld-on adapters without ball valve

6) with ATEX versions: wall housing with operating electronics, can be mounted in Ex zone 2

Accessories

	Catalog No.	Code	
Special cable between transducer and evaluation unit			
Ready-made, for remote version only			
Cable length 5 m	7962844		
Cable length 15 m	7962845		
Cable length 25 m	7962846		
PROFIBUS DP-T connector plug	7962847		
PROFIBUS DP socket, for customizing the bus cable	7962848		
PROFIBUS DP connector, for customizing the bus cable	7962849		
For T-pieces and DP connectors see data sheet 10/63-6.44 EN			
PROFIBUS DTM)			
PROFIBUS PDM (Siemens) on request) see data sheet 10/63-1.20 EN			
HART DTM)			

	Catal	oa No).				Code		
Pipe component design 2 for FMT500-IG	V142	-							
partial measuring section									
PN 40, material stainless steel 1.4571 (316Ti)									
(flange shape B1 according to EN 1092-1)									
Nominal size DN 25 Inner \emptyset 28.5	5 1)	1	1	0				
Nominal size DN 40 43.1		/	1	2	0				
Nominal size DN 50 54.5			1	3	0				
Nominal size DN 25 with flow straightener 28.5		١	1	4	0				
Nominal size DN 40 with flow straightener 43.1		<i>'</i>		5	0				
Connecting dimensions for flanges according to	<u> </u>	/	-	5	•				
ASME B16.5, CL 150 (ANSI), Sch 40 S,									
material stainless steel 1.4571 (316Ti) Nominal size 1" Inner Ø 26.6	· ·	、	2		0				
)	2	A					
Nominal size 1 1/2" 40.9			2	В	0				
Nominal size 2" 52.6			2	С					
Nominal size 1" with flow straightener 26.6		,	2	D	0				
Nominal size 1 1/2" with flow straightener 40.9	91)	2	Е	0				
Connecting dimensions for flanges according to									
ASME B16.5, CL 300 (ANSI), Sch 40 S,									
material stainless steel 1.4571 (316Ti)									
Nominal size 1" Inner \emptyset 26.6	61)	3	А					
Nominal size 1 1/2" 40.9	9		3	В	0				
Nominal size 2" 52.6	6		3	С	0				
Nominal size 1" with flow straightener 26.6	61)	3	D	0				
Nominal size 1 1/2" with flow straightener 40.9	91)	3	Е	0				
		,							•
Additional ordering information									
							Code		1
3.1 B Certificate material certificate (only for pipe comp	onont)						30A		
3.1 B Certificate material certificate (only for pipe comp	Jonenij						30A		
Ordering information									
						Catalog No.			
Weld-on adapter PN 40 for FMT500-IG									
recommended from DN 150									
Material									
stainless steel 1.4571 (316Ti)						7962500			
1.0037						7962502			
Weld-on adapter with ball valve/hot tap fitting for FM	T500-IG								
material stainless steel 1.4571 (316Ti)									
Weld-on adapter with ball valve for pressureless,						7962832			
non gas-tight applications									1
Weld-on adapter with integrated hot tap fitting for nominal						7964131			
size DN 100 to DN 125/4" to 5" and transducers									
of 425 mm, for pressure applications up to 16 bars and									
gas-tight applications, material 1.4571									1
						7064122			
						7964132			
Weld-on adapter with integrated hot tap fitting for nominal								1	1
Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers									
Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and									
Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and gas-tight applications, material 1.4571									
Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and gas-tight applications, material 1.4571 Special pipe component for transducer FMT500-IG									
 Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and gas-tight applications, material 1.4571 Special pipe component for transducer FMT500-IG call 									
 Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and gas-tight applications, material 1.4571 Special pipe component for transducer FMT500-IG call Description:" 									
 Weld-on adapter with integrated hot tap fitting for nominal size DN 150 to DN 300/6" to 12" and transducers of 425 mm, for pressure applications up to 16 bars and gas-tight applications, material 1.4571 Special pipe component for transducer FMT500-IG call 	"								

1) In order to achieve the specified measuring accuracy, the calibration

of the transducer must be performed in the original pipe component.

If the transducer needs to be re-calibrated, it must be submitted together with the same pipe component.

		Catalog No).				Code		
Pipe component design 1 for FMT500-IG		V14232-							
wafer flange version									
PN 40, material stainless steel 1.4571 (316Ti)	Inner Ø (mm)							
Nominal size DN 40	43.1		1	2	0				
Nominal size DN 50	54.5		1	3	0				
Nominal size DN 80	82.5		1	4	0				
Nominal size DN 100	107.1		1	5	0				
Nominal size DN 150	159.3		1	6	0				
Nominal size DN 200	206.5		1	7	0				
Connecting dimensions for flanges according	g to								
ASME B16.5, CL 150 (ANSI), Sch 40 S,	-								
material stainless steel 1.4571 (316Ti)									
Nominal size 1 1/2"	40.9		2	В	0				
Nominal size 2"	52.6		2	С	0				
Nominal size 3"	78.0		2	D	0				
Nominal size 4"	102.4		2	Е	0				
Nominal size 6"	154.2		2	F	0				
Nominal size 8"	202.7		2	G	0				
Connecting dimensions for flanges according	g to								
ASME B16.5, CL 300 (ANSI), Sch 40 S,	-								
material stainless steel 1.4571 (316Ti)									
Nominal size 1 1/2"	40.9		3	в	0				
Nominal size 2"	52.6		3	С	0				
Nominal size 3"	78.0		3	D	0				
Nominal size 4"	102.4		3	Е	0				
Nominal size 6"	154.2		3	F	0				
Nominal size 8"	202.7		3	G	0				
Ball valve or hot tap fitting									
without						0			
Pipe component with ball valve for pressureless a	pplications,	non gas-tic	ht			1			
material stainless steel 1.4571 (316Ti)		0 0							
Pipe component with integrated hot tap fitting for n	nominal size	DN 50				4			
or DN 80 (2"/3") and transducer of 263 mm, for									
applications up to 16 bars and gas-tight applicat	ions,								
material stainless steel 1.4571 (316Ti), flanges									
Pipe component with integrated hot tap fitting for n	nominal size	DN 100				5			
or DN 150 (4"/6") and transducer of 425 mm, fo									
applications up to 16 bars and gas-tight applicat	ions,								
material stainless steel 1.4571 (316Ti), flanges	PN 40								
Additional ordering information								1	
							Code		
3.1 B Certificate material certificate (only for pi	pe compon	ent)					30A		

Additional ordering information for calibration

						1	
		Characteristic 1	Characteristic 2	Characteristic 3	Characteristic 4		
Code-No.	1)	511	521	531	541		
Name of gas							
Gas component 1							
Vol %							
Gas component 2							
Vol %							
Gas component 3							
Vol %							
Gas component 4							
Vol %							
Gas component 5							
Vol %							
Gas component 6							
Vol %							
Gas component 7							
Vol %							
Gas component 8							
Vol %							
Gas component 9							
Vol %							
Gas component 10							
Vol %							
Code-No.	1)	512	522	532	542		
Operating	ŕ						
temperature °C							
Code-No.	1)	513	523	533	543		
Operating pressure	,						
bar abs.							
Code-No.	1)	514	524	534	544		
Measuring range		-	-		-		
Code-No.		515	525	535	545		
Unit	2)						
Code-No.	1)	518	528	538	548		
Nominal size DN	í	-					
Nom. pressure PN							
Pipe inner \emptyset (mm)							
Code-No.	1)	519	529	539	549		İ
Standard conditions	.,						
°C, mbar abs.							
Display and menu			•	•			1
language		German	English	French	Portuguese		
(delivered state)							
Material of the connecte	ed					1	1
pipes	-						
F						-	

1) Add the 3-digit Code No to the Catalog No.

2) Available flow rate units see table, standard: kg/h, Nm³/h

t/d	t/h	t/min	t/s
kg/d	kg/h	kg/min	kg/s
	g/h	g/min	g/s
lb/d	lb/h	lb/min	lb/s
Nm³/d	Nm³/h	Nm³/min	Nm³/s
NI/d	NI/h	NI/min	NI/s
SCFD	SCFH	SCFM	SCFS

1. Measuring task

2. Measuring point parameters

Gas type and composition (Vol %) ¹⁾			Flow rate units ²⁾ kg/h9
Measuring range min Medium temperature (°C) min	normal			kg/s Image: Constraint of the second secon
Operating pressure (bar abs.) min	normal	-		SCFH Image: Constraint of the sector of the sec
Pipe: nominal width DN	Nominal pressure	PN Internal pipe ∅	(mm) Wall thic	kness (mm)
Gas contains corrosive substances	no 🖵	yes 🖵	which	Pipe material
Gas contains components that tend to condensate	no 🖵	yes	which	Dew point (°C)
Medium contains solid particles	no 🖵	yes 🖵	Particle size (µm)	Quantity (mg/m ³) ²⁾
Measuring point	First equipment 🛛	Exchange	Old device	

3. Device parameters

Application	Supply voltage	Outputs
Without explosion protection \ldots	110230 V AC/DC	Analog/HART + digital
With explosion protection for zone 2 \ldots .	24 V AC/DC 🔾	PROFIBUS DPV1
With explosion protection for zone 1 \ldots .		
With explosion protection for zone 0 \ldots .		
- ·		a
Design	Pipe components	Existing steadying runs ³⁾
	Pipe components Wafer flange	
		Steadying run on the inlet side
	Wafer flange Image Imag	Steadying run on the inlet side

 $^{1)}$ Specify gas mixtures, e.g. natural gas: CH₄ = 90 %; C₂H₆ = 5 %; N₂ = 3 %; CO₂ = 2 % $^{2)}$ Standard condition, e.g. referred to 0 °C/1013 mbar $^{3)}$ See recommendations on page 15

ABB has Sales & Customer Support expertise in over 100 countries worldwide.

www.abb.com/instrumentation

The Company's policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

Printed in the Fed. Rep. of Germany (03.05)

© ABB 2005

ABB Ltd. Oldends Lane, Stonehouse Gloucestershire, GL10 3TA UK Tel: +44(0)1453 826661 Fax: +44(0)1453 829671 ABB Inc. 125 E. County Line Road Warminster, PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183 ABB Inc. 3450 Harvester Road Burlington Ontario L7N 3W5 Canada Tel: +1 905 681 0565 Fax: +1 905 681 2810 ABB Automation Products GmbH Borsigstr. 2 63755 Alzenau Germany Tel: +49 551 905-534 Fax: +49 551 905-555 CCC-support.deapr@de.abb.com