10/18-0.20 EN

EP0005XA.TIF

- Communication based on the "HART" protocol
- High operational reliability through regular operational tests
- Electronical adjustment of operating data, in parts automatic (autostroke) and in parts manual
■ Easily understandable adjustment mode, adjustment via the built-in operator panel or remotely using the standardized configuration program

■ Characteristic linear, equal percentage, or with 20 configurable reference points

■ Explosion protection certificates: CENELEC - FM - CSA and others, intrinsically safe and flameproof

- 4 ... 20 mA input, 2-wire, Supply voltage 9.8 V or 10.8 V DC
- Complies with the directives for EMC and CE conformity
\square Wide operating temperature range, -40 bis $+85^{\circ} \mathrm{C}$
- Robust aluminum or stainless steel case
- Influence of shock and vibration $<1 \%$ with a load of up to 10 g and frequencies between 20 and 80 HZ

■ Non-contact (inductive) position sensor

- Stable control loop through self-adaptation and continuous modulation of the output

■ Easy to install, all connections on ones side, separate terminal box for wiring

- Attachment to linear or rotary actutators in accordance with the standard

■ Low operating cost, air consumption only $0.03 \mathrm{~kg} / \mathrm{h}$,

Construction and mode of operation

The concept

The TZID positioner is an intelligent and electronically configurable device with communication capabilities. High-tech electronics are coupled with a robust and well-proven mechanical construction on the pneumatic side to obtain an optimal design of positioner.

The functional heart of the TZID positioner is its CPU (see illustration below). The mechanical and pneumatic assembly groups only have secondary functions. The input signal (set point) and the position (actual value) are fed into the processor via A/D converter. An output signal is computed on the basis of the control deviation and a PD control algorithm. The signal is output to an I/P module via a D / A converter and is used for analog modulation of the I/P module. The I/P module provides for pneumatic, analog adjustment of a $3 / 3$ way valve. The cross-sectional area of the valve air ducts for filling the actuator with air or evacuating air from the actuator is changed in proportion with the adjustment. Continuous signal modulation yields optimal results in terms of precise and rapid control until reaching the set point and in terms of the adaptation to actuators of different sizes and different supply pressures.

The I/P conversion is done with the same I/P module as used for the TEIP 11 signal converter. This well-proven module is already used in the field more than 500.000 times and has an unequaled immunity to shock and vibration.

The TZID positioner has a two-wire $4 . . .20 \mathrm{~mA}$ input. The energy needed to power the electronic component parts is derived from the input signal. Compressed air (1.4.... 6 bar) is the only external energy required. The TZID has a low consumption of less than 4 mA due to the two-wire circuitry, and of only 0.03 kg compressed air per hour.

A rotating feedback shaft for determining the position is the only moving part of the TZID. An inductive, non-contact sensor converts the position into an electrical signal. As a result, the wear-rate is very low.
The TZID positioner provides for maximum operational reliability. Adherence to the EMC regulation ensures immunity to EMF and RFI. The robust IP 65 (NEMA 4X) metal case protects the TZID against harsh environments. Special functions for monitoring that the CPU works properly and that the control point is controlled correctly deliver an alarm message if an error occurs.

The TZID positioner is designed for the operating temperature range of -40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$.

EP0023EN.EPS
Fig. 1 TZID schematic diagram

Attachment

The TZID can be attached to pneumatic actuators for linear (stroke) or rotary movement (angle of rotation), to actuators with spring return (single acting) or with double air action (double acting).

The off-the shelf devices are designed for attachment conforming to the standard (lateral attachment to DIN/IEC 534 or attachment to rotary actuators to VDI/VDE 3845). Customized actuator-specific versions for special attachment are available upon request.

When mounting the positioner to an actuator, a rough balancing of the mechanical link for converting the stroke suffices. The wide usable range of the angle of rotation dispenses with the need for a time-consuming mechanical adjustment. The fine adjustment is done automatically through the autostroke.

The air connections and the cable glands are located on the right hand side, making installation easy. NPT connections are provided for the air pipes, and screw terminals are available for connecting the electrical wires.

Construction and mode of operation

Matching to the operating conditions

Various parameters can be set, helping the user to achieve optimal precise control until reaching the setpoint and a high operational reliability. The parameters can be changed while the positioner is on line and working, and are then immediately taken over.

Operating parameters

■ Signal range 4 .. 20 mA or split-range

- Valve action

Direct:
Range 4... $20 \mathrm{~mA} /$ direction $0 . . .100 \%$
Reverse: Range $20 \ldots . \mathrm{mA} /$ direction $0 . . .100 \%$

- Characteristic curve (travel $=\mathrm{f}$ \{positioning signal\}) linear,
equal percentage $1: 25$ or $1: 50$ or $25: 1$ or $50: 1$,
or user-configurable with 20 reference points
- Tolerance band (sensitivity limit)

The factory setting of 0.3% is a typical value, which only has to be increased in case of very short strokes or high hysteresis values of the valve. Normaly, the controller automatically optimizes itself during the autostroke function.

- Travel limiting

The positioning travel, i.e. the stroke or angle of rotation, can be reduced as required within the full range of $0 . .100 \%$, provided that a minimum value of 20% is observed.

- Shut-off value

This function causes immediate closing of the actuator. The threshold can be configured.

Fig. 2 IBIS window "Device data"

Time-out monitoring

This function is used to monitor the time needed to reach the set point. It triggers an alarm if the unit is not able to adjust the deviation such that it fits into the tolerance band within the set time.

- Adjusted speed for full travel 100%

This function is used to increase the natural speed for controlling the full travel until reaching the set point. The speed can be set independently for each direction.

- Alarm limits for minimum and maximum positions This parameter is used to define the switching points for the minimum and the maximum position.

Parameters for diagnosing the operating condition

Prior to preventive maintenance you can make a diagnosis using the following data:

- Counts for the individual control actions and the total displacement of the valve (valve stem). The values indicate the use of the valve. Limits can be defined for both counters. If the limits are exceeded, an alarm is generated

Fig. 3 IBIS window "Displacement meter"

- Record of the current control operation in tabular form. The defined signal and the controlled position are continuously listed with a high-resolution, adjustable cycle time of $40 \ldots 160 \mathrm{msec}$.
- Record of the transfer function in tabular form. The controlled position after a set point jump (position signal) is recorded with an adjustable high-resolution cycle time of $40 . . .160 \mathrm{msec}$.

The values saved in tabular form can be exported as an EXCEL file and can then be converted into a graphic display.

Fig. 4 IBIS window " Setpoint jump"

Construction and mode of operation

Monitoring functions

The TZID positioner is permanently monitored while it is working. The following list gives some examples for errors that can be detected and indicated:

- Watchdog alarm
- Leakage in the actuator or air pipe
- Signal < 4 or > 20 mA
- Position out of adjusted range (rotation angle) for position feedback
- User actions (manual) affecting CPU operation (controller is not active)
- Positioning time-out (adjustable time parameter)
- Limit of stroke counter or displacement meter exceeded (limits can be adjusted during diagnosis)
If any of these troubles occurs, an alarm is generated and reported, either by indication of an error code on the built-in display or via the option modules (if plugged in).
Extended monitoring is possible via the communication port. The registered troubles are indicated as plain text in a special window (in online mode). Additionally, the most important process varaiables like the output signal in mA , the position in $\%$ and the deviation are indicated.
The operator can decide whether or not the above-listed troubles shall generate an alarm. This can be configured via the communication port and,e.g., the special "Options" window of the IBIS configuration program (see. Fig. 5).

Fig. 5 IBIS window "Options"

Functional check

When the option module for analog or for digital position feedback is connected, it can be checked for proper function and wiring. For this purpose, simulation values can be transmitted to the positioner, e.g. by using the "Simulation" window of the IBIS configuration program (see Fig. 6). While the simulation is active, the TZID positioner is not working in control mode. After around 2 minutes the simulation is stopped automatically. It can also be terminated at any time by actuation of the "Cancel" button.

Fig. 6 IBIS window "Simulation"

Adjustment

The following adjustment parameters are available:

- Full travel of 100% (stroke or angle of rotation)
- Effective direction of the actuator (direction with compressed air or spring action)
- Valve action (direction of action for opening/closing the valve)
- Controller parameters

Most of these parameters can be adjusted automatically by starting the autostroke function. Only the valve action needs to be adjusted manually.

Fig. 7 IBIS window "Adjustment"

Operation and communication

General

The TZID positioner has a built-in operator panel with special adjustment capabilities tailored to commissioning. The full range of TZID functions can only be accessed via the communication port.

On the built-in operator panel you can make any adjustment that is necessary to commission the positioner after attachment to the actuator. The panel is intuitively operable. Short instructions printed on the panel contain the required information.

The full range of functions described above is available via the communication port. Communication is based on the HART protocol. Signals can be tapped either locally at the connector or fre-quency-modulated at any chosen point of the $4 \ldots .20 \mathrm{~mA}$ signal transmission. Communication is done on line while the system is running, without impairing operation. New parameter settings become active immediately after being downloaded into the device, but have to be stored in the non-volatile memory with a special command.

A special connector (LKS adapter or FSK modem), a standard off-the-shelf PC (which has to meet special hardware requirements), and a special software (e.g. IBIS or Smart Vision ${ }^{\left({ }^{(}\right)}$) are needed.

LKS adapter as communication link

The LKS adapter is a connection solution which is both easy to install and cost-saving. On the TZID side a special connector (local communication interface) is used. On the PC side, a double sub-D connector with a 9 -pole and a 25 -pole connector is used. The connector also accommodates an RS 232 interface converter for connection to the PC.

The TZID can be configured without requiring that a positioning signal is present. The CPU is powered by the PC.

FSK modem as communication link

The FSK modem allows digital frequency-modulated communication (Frequency Shift Keying). The digital signal "0" corresponds to 2.2 kHz , the digital signal "1" to 1.2 kHz . Tapping is possible at any chosen point of $4 \ldots 20 \mathrm{~mA}$ transmission, i.e. directly on site at the TZID or in any remote place, e.g. at a PLS in the control room. Fre-quency-modulated communication requires a circuit with a resistance of at least 250 ohms

The FSK modem is available with or without electrical isolation. In conjunction with a special isolating amplifier - e.g. Contrans I or Contrans_remote - the model with electrical isolation is suitable for connection to a bus. Communication is also possible with a TZID with explosion protection, provided that the modem itself is placed outside the hazardous area. If these capabilities are not required, you can also use the cost-saving modem without electrical isolation (FSK Modem II). For details and technical data refer to data sheets 10/15-6.97 EN (FSK Modem) and 10/18-0.31 EN (FSK Modem II).

Fig. 8 Communication via LKS adapter

Fig. 9 Communication via Hart ${ }^{\circledR}$ protocol and FSK Modem

Programs

IBIS program

The IBIS (Intelligent Broadcasting and Information System) program is a windows-type graphical user interface with user-friendly and intuitively operable standardized windows. IBIS offers comfortable functions for configuring, monitoring and testing intelligent field and control room instruments.

You can install and call up IBIS in different languages, select the communication interface as required, and protect access with a password. IBIS is controlled via mouse or keyboard. Context-sensitive on-line help can be called up for all menu items by pressing the < F1 > key

Further details are available upon request.

Hardware requirements

Computer	PC/Notebook for DOS or WINDOWS, (IBM compatible) 386 or higher
Operating system	Microsoft DOS 3.2 or higher Microsoft WINDOWS 3.1 or higher
RAM	at least 640 Kbytes (580 Kbytes free) for DOS at least 4 Mbytes for WINDOWS
Graphics card	CGA, EGA, VGA or Hercules for DOS VGA for WINDOWS
Hard disk	at least. 2.5 Mbytes free memory Disk drive
3 1/2", 1.44 Mbytes	
Monitor	Monochrome, color or LCD
Interface	RS 232 C for communication CENTRONICS for printer (optional)

Fig. 10
Typical IBIS window

Smart Vision ${ }^{\circledR}$ program

The Smart Vision ${ }^{\circledR}$ program has the same "look" as "WINDOWS", i.e. it has similar intuitively operable windows, and commands can be entered in the same way. Everybody who is familiar with "WINDOWS" can easily work with Smart Vision ${ }^{\circledR}$ as well. Therefore, you have to refer to the user's guides only every now and then.

The Smart Vision ${ }^{\circledR}$ communication program can be used with our HART compatible devices. Due to its open structure Smart Vision ${ }^{\circledR}$ allows communication with other devices as well. Defined commands can be realized easily by using available tools and without requiring major efforts.
Smart Vision ${ }^{\circledR}$ enables:
Configuration or setting of parameters of the devices

- Display of measured values digitally, as bargraph display or as trend display (curve)

Diagnosis and retrieval of status messages

- Storage of data, e.g. of configuration data of the device
- Data output, e.g. to the printer
- Planning and administration of TAGs

Further details are available upon request.

Hardware requirements

Computer	PC/Notebook for WINDOWS (IBM compatible) 486 or higher
Operating system	Microsoft WINDOWS 3.1 or higher Microsoft WINDOWS 95 or WINDOWS NT
Hard disk	at least 2 Mbytes of free memory
RAM	at least 500 Kbytes of free memory
Disk drive	$31 / 2^{\prime \prime}(1.44$ MB) or CD ROM
Interface	RS 232 C for communication

Fig. 11 Typical Smart Vision ${ }^{\circledR}$ window

Technical data

Input

Signal range
Nominal range $4 . . .20 \mathrm{~mA}$
Split ranges configurable between 20 and 100 \%
Two-wire circuitry
Supply voltage
9.8 VDC without explosion protection
9.8 VDC with Ex d approval
10.8 VDC for intrinsically safe device

Resistance $\quad 490$ ohms at 20 mA and 9.8 VDC 540 ohms at 20 mA and 10.8 VDC

Output

Signal range
0... 6 bar ($0 . . .90 \mathrm{psi}$)

Air capacity
At supply pressure of 1.4 bar (20 psi)

$$
5.5 \mathrm{~kg} / \mathrm{h}=4.5 \mathrm{Nm} 3 / \mathrm{h}=2.5 \mathrm{scfm}
$$

At supply pressure of 6 bar (90 psi)
$13 \mathrm{~kg} / \mathrm{h}=11 \mathrm{Nm} 3 / \mathrm{h}=6.5 \mathrm{scfm}$
(Booster for increase of capacity available on request)

Action

Single or double, air is evacuated from actuator or actuator is blocked in case of (electrical) power failure
Shut off value
Setable to $0 . . .20 \%$ of positioning signal
(if the value falls below the set value, the positioner immediately sets the actuator to the closed position)

Stroke movement

Angle of rotation
60° nominal range for attachment to linear actuators in accordance with DIN/IEC 534
120° nominal range for attachment to rotary actuators in accordance with VDI/VDE 3845
Used range is $20 \ldots 100 \%$ of nominal range
Adjusted speed
Range $0 . . .200 \mathrm{sec}$,
individually configurable for each direction
Time-out monitoring
Range $0 . . .200 \mathrm{sec}$ (monitoring parameter for control until the deviation is within the tolerance band)
Stroke limiting
Min. and max. limits, setable between 0 and 100% of the stroke

Air supply

Instrument air
free of oil, water and dust to DIN/ISO 8573-1
pollution and oil contents according to Class 3
dew point 10 K below operating temperature
Supply pressure
1.4... 6 bar ($20 \ldots . .90 \mathrm{psi}$)

Caution:
Do not exceed the max. working pressure of the actuator!
Air consumption
$<0.03 \mathrm{~kg} / \mathrm{h}$ (independent of supply pressure)

Transmission data and influences

Effective direction (output signal or pressure in actuator)
Increasing: Increasing signal 4... 20 mA
Increasing pressure y_{1} in actuator
Decreasing:Increasing signal $4 \ldots 20 \mathrm{~mA}$
Decreasing_pressure y_{1} in actuator
Valve action
Direct:Range 4... $20 \mathrm{~mA}=$ position $0 . .100 \%$
Reverse:Range 20... $4 \mathrm{~mA}=$ position $0 . .100 \%$
Characteristic curve (travel $=\{\{$ signal $\}$)
linear,
equal percentage $1: 25$ or $1: 50$ or $25: 1$ or $50: 1$,
or user-configurable with 20 reference points
Characteristic deviation

$$
\leq 0.5 \%
$$

Dead band (sensitivity)
Adjustable from 0.3... 10 \%
Resolution (A/D conversion) > 8000 steps
Sample rate
20 msec
Influence of ambient temperature $\leq 0.5 \%$ for every 10 K
Influence of vibration $\leq 1 \%$ up to 10 g and $20 \ldots 80 \mathrm{~Hz}$
Seismic requirements
Meets requirements of DIN/IEC 68-3-3 class III for strong and strongest earthquakes
Influence of mounting orientation No effect
EMC
Meets EMC directive 89/336/EEC as of May 1989
CE mark
Meets the EC directive for the CE conformity certification
Communication port
Connector for LKS adapter (standard)
FSK module for frequency-modulated tapping (optional)

Environmental capabilities

Climate class
GPF to DIN 40040
Ambient temperature
-40 to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
for operation, storage and transport

Technical data

Explosion protection

CENELEC
EEx ia IIC T4/T5/T6, PTB No. Ex-94.C. 2133 X
EEx d IIC T4/T5/T6, BVS No. 96.D. 2008 X
BRITISH Standards 6941:1988
Ex N IIC T6, Certificate SCS No: Ex95Y4126X FM

Intrinsically Safe CLI-II-III, Div 1, Grp A-B-C-D-E-F-G
Non-incendive CL I-IIIIII, Div 2, Grp A-B-C-D-E-F-G
Explosion-proof
CSA
Intrinsically Safe
Non-incendive
Explosion-proof

CL I-II-III, Div 1, Grp B-C-D-E-F-G
CLI, Div 1, Grp A-B-C-D
CL II, Div 1, Grp E-F-G
CLI, Div 2, Grp A-B-C-D
CL II, Div 2, Grp E-FG
CLI, Div 1, Grp C-D
CL II, Div 1, Grp E-F-G

Case

Material
Aluminum, protection IP 65 (NEMA 4X)
Surface
Case black, RAL 9005, matt
Cover light gray, RAL 9002
with thick film epoxy resin electro-dipcoat
Stainless steel 1.4581, protection IP 65 (NEMA 4X)
Electrical connections
Screw terminals, internal, for $2.5 \mathrm{~mm}^{2}$
Cable entry
Threads Pg. 13.5 or $1 / 2-14$ NPT or M 20×1.5
(depending on model and order)
For TZID models "standard", "intrinsically safe" or "Ex N IIC" with Pg. 13.5 thread the PG 13.5 cable glands are delivered with the device.

For TZID model Ex d with thread M 20×1.5 the EEx d IIC cable glands are delivered only upon special request (certificate of conformity INEX 88B.103.748).

Pneumatic connections G 1/4 or 1/4-18 NPT threads
Weight
2.9 kg (TZID, main catalog no.18341, with aluminum case)
5.6 kg (TZID, main catalog no. 18341, with stainless steel case)
5.8 kg (TZID Ex d, main catalog no. 18342, with aluminum case)

Mounting position
As required

Options

Option module for analog feedback

Signal range $4 \ldots 20 \mathrm{~mA}$ (split ranges configurable)
Two-wire circuitry, power supply 10... 30 V DC
Standard or intrinsically safe version
Valve action direct or reverse (as configured)
Characteristic deviation $\leq 1 \%$
(Whether the module is to be used for alarm reporting and whether the output is to be modulated to <4 or $>20 \mathrm{~mA}$ can be configured).

Option module for digital feedback

3 switches for current circuits in accordance with DIN 19234
Control voltage 8... 25 V DC
Control current < $1.2 \mathrm{~mA}=$ switching state logical " 0 "
Control current > $2.1 \mathrm{~mA}=$ switching state logical "1"
Direction of action: normally logical "0" or logical "1" (as configured)
Standard or intrinsically safe version
Switch assignment: 1 switch for alarms
2 switches for position (adjustable between 0 and 100%)

Mechanical kit for digital position feedback

2 proximity switches for current circuits in acc. with DIN 19234
Control voltage 5... 25 V DC
Control current < $1 \mathrm{~mA}=$ switching state logical "0"
Control current > $3 \mathrm{~mA}=$ switching state logical "1"
Standard or intrinsically safe version ${ }^{1}$)
For min. or max. position
Limits adjustable between 0 and 100 \%
(Function independent of the software and electronics of the positioner)
Direction of action (logical state):

Proximity switch	Position			
	$<\min$	$>\min$	$<\max$	$>\max$
SJ2-SN (NC)	0	1	1	0
SJ2-S1N (NO) ${ }^{2}$)	1	0	0	1

CENELEC EEx ia IIC T1...T6, PTB No. Ex-83/2022 X
Lower limit of operating temperature range: $-25^{\circ} \mathrm{C}$

Accessories

Attachment material

Attachment kit for linear actuators, stroke 10... 85 mm (lateral attachment meets DIN/IEC 534 or Namur)
Lever 170 mm for linear actuators, stroke 10... 150 mm
Attachment bracket for rotary actuators 90°
Attachment to VDI/VDE 3845,
dimensions $A / B=80 / 20 \mathrm{~mm}$

$$
\begin{aligned}
& =80 / 30 \mathrm{~mm} \\
& =130 / 30 \mathrm{~mm} \\
& =130 / 50 \mathrm{~mm}
\end{aligned}
$$

Attachment kit for actuator-specific attachment available on request
Pressure gauges for supply pressure and output pressure
Plastic or stainless steel case, $\varnothing 40 \mathrm{~mm}$
$\begin{aligned} \text { Supply pressure range } & 0 \ldots .10 \mathrm{bar} / 0 . . .140 \mathrm{psi} \\ \text { Output pressure range } & 0 \ldots .10 \mathrm{bar} / 0 . .140 \mathrm{psi} \\ \text { or } & 0 \ldots . .4 \mathrm{bar} / 0 \ldots . .60 \mathrm{psi}\end{aligned}$
With connection block and attachment material for the TZID
Connection block made of aluminum with black varnish or of stainless steel

Fig. 11 TZID positioner with attached pressure gauge block and filter regulator
(if not otherwise agreed, the pressure gauge block and the filter regulator are delivered as separate units for mounting by the customer)

Filter regulator with attachment material

All metal version, brass, varnished black
Bronze filter element, $40 \mu \mathrm{~m}$, with condensate drain
Max. pre-pressure 16 bar,
output pressure adjustable to $1.4 . . .6$ bar

PC adapter for communication

LKS adapter for connector on TZID
FSK modem for frequency-modulated tapping

Configuration program

IBIS for TZID/DOS 3 1/2" disk
IBIS for TZID/WINDOWS3 1/2" disk
Smart Vision ${ }^{\circledR} 3$ 1/2" disk
Smart Vision ${ }^{\circledR}$ as CD ROM
Isolating amplifier for signal range 0/4... 20 mA
Contrans I or Contrans_remote
(see separate data sheets for details)

Ordering information (models "standard", "intrinsically safe" or "Ex N")

Intelligent positioner TZID

electropneumatic, configurable
with display and operating panel
signal input 4 ... 20 mA , two-wire
Case material
aluminium, varnished, protection IP 65
stainless steel 1.4581, protection IP 65
Communication port and attachment
with plug connector for LKS adapter
attachment to linear actuators to DIN/IEC 534
attachment to rotary actuators 90° to VDI/VDE 3845
for aluminium case for stainless steel case
with plug connector for LKS adapter and FSK modem
attachment to linear actuators to DIN/IEC 534
attachment to rotary actuators 90° to VDI/VDE 3845
for aluminium case for stainless steel case
with plug connector for LKS adapter
for actuator-specific attachment (please specify)
with plug connector for LKS adapter and FSK modem
for actuator-specific attachment (please specify)
*) Coding acc. to special device application (see separate data sheet)
Note:
For attachment according to standard additional mounting material as listened in chapter "accessories" is required.

Explosion protection

without
CENELEC EEx ia IIC
CENELEC EEx ia IIC, for inflammable gas
for aluminium case
for stainless steel case
FM / CSA intrinsically safe
BRITISH Standards Ex N IIC
(further approvals upon request)

Controller output / safe position

single acting
air is evacuated from actuator in case of electrical power failure
actuator is blocked in case of electrical power failure
double acting
air is evacuated from actuator in case of electrical power failure
actuator is blocked in case of electrical power failure

Connections

Cable: thread

Pg. 13.5
1/2-14 NPT
Pg. 13.5

Note:

Protection FM/CSA intrinsically safe only with cable connections 1/2-14 NPT thread

Ordering information (models "standard", "intrinsically safe" or "Ex N")

Intelligent positioner TZID

electropneumatic, configurable with display and operating panel
signal input 4 ... 20 mA , two-wire
Supplementary modules
without

Supplementary module for:
Analog position feedback, signal range 4 ... 20 mA , two-wire without explosion protection intrinsically safe CENELEC or FM/CSA or BRITISH Standards Ex N IIC
Digital feedback for min. / max. position and for alarms without explosion protection intrinsically safe CENELEC or FM/CSA or BRITISH Standards Ex N IIC

Mechanical kit for digital feedback of the min. / max. position
with proximity switches SJ2-SN (NC or logical 1)
without explosion protection
intrinsically safe CENELEC or BRITISH Standards Ex N IIC
with proximity switches SJ2-S1N (NO or logical 0)
without explosion protection
intrinsically safe CENELEC or BRITISH Standards Ex N IIC
Supplementary module for analog position feedback, signal range $4 \ldots 20 \mathrm{~mA}$ combined with
mechanical kit for digital feedback of the min./max. position
with proximity switches SJ2-SN (NC or logical 1)
without explosion protection
intrinsically safe CENELEC or BRITISH Standards Ex N IIC
with proximity switches SJ2-S1N (NO or logical 0)
without explosion protection
intrinsically safe CENELEC or BRITISH Standards Ex N IIC
Ready for addition of supplementary modules for analog or digital position feedback

Note:

| No FM/CSA certificate for mechanical kit for digital position feedback. | | | |
| :--- | :--- | :--- | :--- | | German |
| :--- |
| English
 French
 (other languages upon request) |
| Labeling (language) |
| Design (varnish/coding) |
| standard |
| (other designs upon request) |

Accessories for models "standard" or "intrinsically safe" or "Ex N"

Accessories for models "standard" or "intrinsically safe" or "Ex N"

Ordering information (model "Ex d, flameproof")

Ordering information (model "Ex d, flameproof")

Accessories for models "Ex d, flameproof"

Accessories for model "Ex d, flameproof"

Stock versions

Dimensional drawings of TZID models "standard", "intrisically safe" or "Ex n"

Lateral attachment to DIN / IEC 534

Front view

Rear view

Bottom view

Side view (right)

Attachment to rotary actuator to VDI / VDE 3845

Front view

Rear view

Bottom view

Side view (right)

Dimensional drawings of TZID models "Ex d", flameproof

Lateral attachment to DIN / IEC 534

Front view

Rear view

Bottom view

Side view (right)

Attachment to rotary actuator to VDI / VDE 3845

Front view

Rear view

Bottom view

Side view (right)

Terminal diagrams

Terminal layout of TZID

Terminal layout of TZID Ex d

Assignment of 8-pole terminal block

Basic model

[^0]

Basic model with "analog position feedback" module

Basic model with "analog position feedback" module and mechanical kit for "digital position feedback"

ABB Automation Products GmbH
Subject to technical changes
Schillerstraße 72

[^0]: Basic model with "digital position feedback" module

